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ON ENCLOSING SIMPLE ROOTS OF NONLINEAR EQUATIONS 

G. ALEFELD, F. A. POTRA, AND YIXUN SHI 

ABSTRACT. In this paper we present two efficient algorithms for enclosing a 
simple root of the nonlinear equation f(x) = 0 in the interval [a, b]. They 
improve recent methods of Alefeld and Potra by achieving higher efficiency 
indices and avoiding the solution of a quadratic equation per iteration. The 
efficiency indices of our methods are 1.5537... and 1.618... , respectively. 
We show that our second method is an optimal algorithm in some sense. Our 
numerical experiments show that the two methods of the present paper compare 
well with the above methods of Alefeld and Potra as well as efficient solvers of 
Dekker, Brent, and Le. The second method in this paper has the best behavior 
of all, especially when the termination tolerance is small. 

1. INTRODUCTION 

In a recent paper, Alefeld and Potra [2] proposed three efficient methods 
for enclosing a simple zero x* of a continuous function f (x) in the interval 
[a, b] provided that f (a)f (b) < 0. Starting with the initial enclosing interval 
[al, bi] = [a, b], the methods produce a sequence of intervals {[an, b,]}n?1 
such that 

(1) x* E [an+1 a bn+1] C [an a bn] C c [al, bi] = [a, b], 

(2) lim (bn-an) = 0. 

The asymptotic efficiency indices of each of those three methods, in the sense of 

Ostrowski [10], are X2 = 1.4142..., a 4= 1.5874... , and (3 + v )/2 = 
1.4892... , respectively. The numerical experiments in that paper show that 
the practical behavior of those methods is comparable to that of the efficient 
equation solvers of Dekker [6] and Brent [5], although they perform slightly 
worse on some problems. 

Although there are many enclosing methods for solving the equation 

(3) f(x) = 0, 

where f(x) is continuous on [a, b] and has a simple root x* in [a, b], most 
of them do not have nice asymptotic convergence properties of the diameters 
{ (bn - an) }IO" I. For example, in case of Dekker's method, the diameters bn - an 
may remain greater than a relative large positive quantity until the last iteration 
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when a " 5-step" is taken. In case of Le's Algorithm LZ4 of [8], the conver- 
gence properties of {(bn - an)}n10?= have not been proved except that the total 
number of function evaluations will be bounded by four times that needed by 
the bisection method, which is also the upper bound of the number of function 
evaluations required by our second method in this paper. For other examples, 
like Brent's method, the Illinois method, the Anderson-Bjdrck method, the Reg- 
ula Falsi method, Snyder's method, the Pegasus method, and so on, only the 
convergence rate of {Xn- - I I} ̀ I, where xn is the current estimate of x*, has 
been studied and not the convergence rate of the diameters (bn - an). 

In case f(x) is convex on [a, b], the classical Newton-Fourier method [10, 
p. 248], J. W. Schmidt's method [12], and the methods of Alefeld and Potra 
[1] produce a sequence of enclosing intervals whose diameters are superlinearly 
convergent to zero. The highest asymptotic efficiency index of those methods, 
1.5537..., is attained by a method of J. W. Schmidt [12] and a slight modifi- 
cation of this method due to Alefeld and Potra [1]. 

In the paper of Alefeld and Potra [2] three iterative methods are proposed that 
produce enclosing intervals satisfying (1) and (2) without any convexity assump- 
tions on f. Surprisingly enough, under appropriate smoothness assumptions, 
one of the methods of [2] has the efficiency index 1.5874... , which is higher 
than the efficiency index of the above-mentioned method of J. W. Schmidt [12]. 

In the present paper two new algorithms for enclosing zeros of nonconvex 
functions are presented. Our first method requires at most 3, while our second 
method requires at most 4 function evaluations per step. Both methods reduce 
the length of the enclosing interval by at least one half at each step, so that in 
the worst case scenario our methods require 3 times, respectively 4 times, more 
function evaluations than the bisection method. As the bisection method, or 
the methods of Brent [5], Dekker [6], or Le [8, 9], our methods are applicable 
to rather general problems involving discontinuous functions and derivatives, 
multiple zeros, etc. (see Theorem 3.1). However, in case of simple zeros of 
C3-functions we can prove that, asymptotically, our first method requires only 
2, and our second method only 3 function evaluations per step. Moreover, in 
this case the sequence of diameters {(bn - an)}?I10I converges to zero with R- 
order at least 1 + X = 2.414... for our first method, and R-order at least 
2 + V5_ = 4.236 ... for our second method. Hence the corresponding efficiency 
indices are = 1.5537... and 2+V = (1 + 3)/2 = 1.618..., 
respectively. As far as we know, the latter is the highest efficiency index for 
iterative methods that produce monotone enclosing intervals for simple zeros 
of sufficiently smooth functions. 

This paper improves the results of [2] in two ways. First, by making better use 
of available information, we obtain a higher efficiency index. Second, our new 
algorithms do not use the exact solution of a quadratic equation at each step. 
Instead, we use 2 or 3 Newton steps to get a convenient approximation. This 
modification saves the work of computing the square root, makes the subroutine 
program much simpler, and preserves the good convergence properties. For 
convenience of comparison, we list the three algorithms of [2] in the Appendix 
of this paper. 

In our numerical experiments we compared our methods with the methods in 
[2], with the methods of Dekker [6] and Brent [5] which are used in many stan- 
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dard software packages, and also with the Algorithm LZ4 of Le [8]. The results 
are presented in ?5. The numerical results show that the two methods of the 
present paper compare well with the other six methods. The second method in 
this paper has the best behavior of all, especially when the termination tolerance 
is small. 

In ?6, we show that in a certain sense our second method is an optimal 
procedure. 

2. PRELIMINARY SUBROUTINES AND LEMMAS 

In this section we present some notations and results to be used later. We 
assume throughout that f (x) is continuous on [a, b] and that f(a)f(b) < 0. 
We consider a point c E [a, b]. 

Subroutine bracket(a, b, c, a, b, d). 
If f (c) = 0, then print c and stop; 
If f(a)f(c) < 0, then a = a, b=c, d=b; 
If f(b)f(c) < 0, then = c, b=b, d = a. 

After calling the above subroutine, we will have a new interval [a, b] c [a, b] 
with f(a)f(b) < 0. Furthermore, we will have a point d X [a, b] such that if 
d < a then f(d)f(d) > 0; otherwise f(d)f(b) > 0. 

Subroutine Newton-Quadratic(a, b, d, r, k). 
Set A = f[a, b, d], B= f[a, b]; 
If A = 0, then r= a-B-1 * f(a); 
If A f(a) >0, then ro =a, else ro = b; 
For i= 1, 2, ... ,k do: 

(4)r,= r1- P(rq ) r1- B + A(2rj-j -a - b) 

r = rk . a 

The above subroutine has a, b, d, and k as inputs and r as output. It is 
assumed that d # [a, b] and that f(d)f(a) > 0 if d < a and f(d)f(b) > 0 
if d > b. Furthermore, k is a positive integer and r is an approximation of 
the unique zero z of the quadratic polynomial 

P(x) = P(a, b, d)(x) = f(a) + f[a, b](x - a) + f[a, b, d](x - a)(x - b) 

in [a, b], where f[a, b] = (f(b) - f(a))/(b - a), and f[a, b, d] = 

(f[b, d] - f[a, b])/(d - a); note that, P(a) = f(a) and P(b) = f(b). Hence, 
P(a)P(b) < 0. 

Lemma 2.1. (i) Under the above assumptions, r E (a, b). 
(ii) Furthermore, if{a, b, d} C [e, f], and if f(x) is twice continuously 

differentiable in [e, f1 with f'(x) $& 0 for all x E [e, f1 and 

5 = min If'(x)I - (b - a) max If"(x)I > 0O 
e<x<f e<x~f 

then 

(5) Ir- zi ?)L(b-a)2k where). - maxeAx2flf(x)I L= 2 - 
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Proof. (i) follows from the monotone convergence of Newton's method on 
quadratics, while (ii) follows by remarking that 

JIA < maxe~x<f If"(x)I 
IAI? ~2 

and IP'(x)l > a > 0 for all x E [a, b]. Indeed, we have that 

(6) Irk zI = Irk_ _ z12 
JA rkI - < k 

IP'(rk1)l zl2 Jrko l- 

where L=1+2+...+2k-1=2k 1. a 

The next lemma can be proved in a straightforward manner; it will be needed 
in ?6. 

Lemma 2.2. Let In = (n + 1+n2)1(n+) for n = 1, 2, 3,...; then I2 > In 
for all n $& 2. 

3. ALGORITHMS 

In this section we present two algorithms for enclosing a simple zero x* of 
a continuous function f(x) in [a, b] where f(a)f(b) < 0. These two algo- 
rithms are improvements of the methods in [2]. The first algorithm requires at 
most 3, and asymptotically 2, function evaluations per iteration, and the sec- 
ond algorithm requires at most 4, and asymptotically 3, function evaluations 
per iteration. Under certain assumptions the first algorithm has an asymptotic 
efficiency index 71+ = 1.5537... and the second algorithm has an asymp- 
totic index (1 + V3)/2 = 2 + = 1.6180.... In the following algorithms, 
kt < 1 is a positive parameter which is usually chosen as kt = 0.5. 

Algorithm 1. 
1.1 set a, = a, b1 = b, c1 = a, - f[ai, bi]-If(a,); 
1.2 call bracket(al, bl, cl, a2, b2, d2); 
For n = 2, 3, ..., do: 
1.3 call Newton-Quadratic(an, bn, dn, en, 2); 
1.4 call bracket(an, bn, en, an, bn, dn); 
1.5 if If(an)l < If(bn)l, then set Un = an, else set Un = Tn 
1.6 set Zn = n- 2f [an, bn]-1 f (un); 
1.7 if I Z n uI > 0. 5(Tn -an), then 0n 5 O.(Tn + an) , else c n 
1.8 call bracket(dn, Tn, 'n, an bn, dn); 
1.9 if bn -n < - (bn-an), then an+i = an, bn+i = bn, dn+i = dn, else call 

bracket(an abn a n a + bn ), an+I a bn+I dn+l ) * El 

Algorithm 2. 

2.1-2.2: same as 1.1-1.2; 
For n = 2, 3, ..., do: 

2.3 call Newton-Quadratic(an, bn, dn n, 2); 
2.4 call bracket(an, bn, en, an, bn, adn); 
2.5 call Newton-Quadratic(an, bn, dn, en, 3); 
2.6 call bracket(an a bn, , en b, dn); 
2.7-2.1 1: same as 1.5-1.9. a 
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The following theorem is a basic property of the above two algorithms, whose 
proof is straightforward and hence will be omitted. 

Theorem 3.1. Let f be a real function defined on [a, b] such that f(a)f(b) < 0, 
and consider one of the Algorithms 1 or 2. Then either a zero of f is found in 
a finite number of steps, or an infinite sequence of intervals [an, bn] is produced 
such that 

f(an)f(bn) < I 

ant an+1 ? bn+i <b, 

bn+- an+l < 1(bn -an) 

lim an = x* = lim bn, 

f(x. - O)f(x* + 0) < 0. El 

Corollary 3.2. Under the hypothesis of Theorem 3.1, assume that f is continu- 
ous at x* . Then x* is a zero off. a 

4. CONVERGENCE RESULTS 

In ?3 it is easy to see that the intervals {[an, bnl}?'iLI produced by either 
Algorithm 1 or Algorithm 2 satisfy that bn+1 - ana1 < j1 (bn - an) for n > 2a 
where ,u1 = maxji, 0.5}. Since ji1 < 1 , this shows at least linear convergence. 
In what follows we show that under certain smoothness assumptions, Algorithm 
1 and Algorithm 2 produce intervals whose diameters {(bn - an)}J1? converge 
to zero with R-orders at least 1 + -= 2.414... and 2 + 5 = 4.236..., 
respectively. 

First, we have the following two lemmas. 

Lemma 4.1 (Alefeld and Potra [2]). Assume that f is continuously differentiable 
in [a, b] and f(a)f(b) < 0, and x* is a simple zero of f(x) in [a, b]. Suppose 
that Algorithm 1 (or Algorithm 2) does not terminate after a finite number of 
iterations. Then there is an n3 such that for all n > n3, the quantities Tn and 
un in step 1.6 (or in step 2.8) satisfy that 

(7) AZc) f (n) < 0- 

Lemma 4.2. Under the assumptions of Lemma 4.1, also assume that f(x) is 
three times continuously differentiable on [a, b]; then 

(i) for Algorithm 1, there are an ri > 0 and an n1 such that for all n > n1 

(8) If (cn) I < ri (bn -an )2 (bn_-1 - , 
where cn is defined in step 1.3; 

(ii) for Algorithm 2, there are an r2 > 0 and an n2 such that for all n > n2 

(9) [ Cnl < 2b n)4(bnl- i n-0 , 
where en is defined in step 2.5. 
Proof. By Theorem 3. 1, bn - an -*+ 0 and x. E (an, bn). Since x* is a simple 
root, f'(x.) $ 0. Therefore, when n is big enough, f'(x) :# 0 for all x E 

[an, bn]. For simplicity, we assume that f'(x) $A 0 for all x e [a, b]. Also, it 
is easy to see that in both algorithms we have that 
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Since AO = mina<x<b lf'(x)l > 0 and bn-an - 0, then for any fixed 0 < ( < AO 
there is an nI such that for all n > nI we have that bn - an < 1 and 

(10) on = AO- max If"(x) I(bn-an) > 5 > O. 
a<x<b 

(i) For Algorithm 1, when n > n1, suppose Zn is the unique zero of 
P(an, bn, dn)(x) in [an, bn] . Then using the error formula for Lagrange inter- 
polation, we see that 

If(Zn)l ? <AlIZn- anl Zn - bnIl Zn - dnl 

(11) < 0.25A,(bn - an)2(bn-I - an-i), where Al = - max lf"'(x)l. 
3!a<x<b 

By Lemma 2.1 and (10), 

( (maxa<x<bIlf(x)l) (bn-an)4<2(bn-an)4 

< )2(bn - an)2(bn-I - an-1), where A2 = (maxa<x<b If"(x) )3 
Combining ( 11) and (12), we have that 

If(cn) I < If(Zn) I + (Imjaxb If (x)l) lCn - Zn I < rl (bn - an)2(bn-I -an-) 

where rl = 0.25A, + A2 maXa<x<b If (x)I 
(ii) For Algorithm 2, when n > n I, we have that 

(13) If(cn)I < rl(bn - an)2(bn-I - an-i), 

where cn is given by 2.3. Suppose 2n is the unique zero of P(an, bn, Cn)(X) 
P(an, bn, dn)(X) in [an, bn]; then as in Alefeld and Potra [2], we deduce that 
there is an n2 (we can choose n2 > n1) such that for all n > n2 

(14) If(2n) l < A3(bn -an)21f1(cn)l, where A3 = 2 0.25 
Al 

Finally, similar to (12), by Lemma 2.1 and (10), 

Ien - 2nl < 24(bn -an)8 < A4(bn - an)4(bn - an-), 

(15) where A4 = (maxa<x<b If"(x)I) 7 

Combining (13), (14), and (15), when n > n2 > n, , we get 

(16) lf(an)l < If(2n)l + max If'(x)I Ien - 2nl < r2(bn - an)4(bn-i - an-) 
a<x<b 

with r2 = ierl + 24 maxa<x<b If'(x)l . l 

The following two theorems show the asymptotic convergence properties of 
Algorithm 1 and Algorithm 2, respectively. 
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Theorem 4.3. Under the assumptions of Lemma 4.2, the sequence of diameters 
{(bn-an)}I'O produced by Algorithm 1 converges to zero, and there is an L1 > 0 
such that 

(17) bn+l -an+I < L1(bn-a )2(bn. -an.i), a Vn = 2, 3,. 

Moreover, there is an N1 such that for all n > N1 we have 

an+I = an and bn+l = bn. 

Hence, when n > N1, Algorithm 1 requires only two function evaluations per 
iteration. 
Proof. As in the proof of Lemma 4.2, we assume without loss of generality that 
f'(x) 0 0 for all x E [a, b]. Take N1 such that N1 > max{n1, n3} . Then by 
Lemma 4.1, (7) holds for all n > N1 . For steps 1.6-1.8 of Algorithm 1 and the 
fact that un, n e [ain, bn] we deduce that 

(18) bn- an < ? n-Un I, Vn > N1. 

From step 1.6 we also see that 

(19) cn- unI = 12f[dn , bTn]ff(un)j < + If(un) 

Finally, since cn e nn bEn}, we have that If(un)l < ?f(cn)l . Combining that 
with (18) and (19), we have 

.1 ~2 
(20) bh-tn 5 i I2 cn) V c Vn > N1. 

Now by Lemma 4.2, If(cn)I ? r1 (bn - an)2(bn1 - an1); hence 

(21) bn-n < rl(bn-an)2(bn-I-ana1), Vn > N1. 

Since {(bn - an)}?I??1 converges to zero, if N1 is large enough, then 

bn -an < yU(bn -an), Vn > Ni. 

This shows that for all n > N1 we will have an+? a = 'n and bn+1 = bn. By 
taking 

LI > max 
2 

rl - (bn+ l - an+I) n = 2, 3, NI, TO (bn - an )2(bn-i - an,1)j 
and using (21), we obtain (17). El 

Corollary 4.4. Under the assumptions of Theorem 4.3, {18n }I? = {(bn -an) I ?= 

converges to zero with an R-order at least 1 + X = 2.414.... Since, asymp- 
totically, Algorithm 1 requires only two function evaluations per iteration, its 

efficiency index is /1 + = 1.5537.... 

Proof. By Theorem 4.3, {f}n??= converges to zero and 8n+1 < LIene8n-I I for 
n = 2, 3,..., and the result follows by invoking Theorem 2. 1 of [ 1 1]. 

Theorem 4.5. Under the assumptions of Lemma 4.2, the sequence of diameters 
{ (bn -an)} I'I1 produced by Algorithm 2 converges to zero, and there is an L2 > 0 
such that 

(22) bn+l -an+? < L2(bn -an)4(bn-I -an1), Vn = 2, 3, 
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Moreover, there is an N2 such that for all n > N2 we have 

an+1= an and bn+1 - bOn 

Hence, when n > N2, Algorithm 2 requires only three function evaluations per 
iteration. 
Proof. The proof is almost the same as that of Theorem 4.3. We assume that 
f'(x) 0 for all x e [a, b]. Take N2 such that N2 > max{n2, n3}. Then, 
when n > N2, as in the proof of Theorem 4.3, we have that 

(23) bn-an If(Pn) I1 

Now by Lemma 4.2, If (en)I < r2(bn - an)4(bn~ - al). Therefore, 

(24) bn -an < r2(bn -an)4(bn-I -an-), Vn > N2. 

The rest of the proof is similar to the corresponding part of the proof of Theo- 
rem 4.3 and is omitted. 0 

Corollary 4.6. Under the assumptions of Theorem 4.4, {fn} Il = {(bn -an)}I l 
converges to zero with an R-order at least 2 + 5 = 4.236.... Since asymp- 
totically, Algorithm 2 requires only three function evaluations per iteration, its 
efficiency index is a2+V3= 1.618.... E 

5. NUMERICAL EXPERIMENTS 

In this section we present some numerical experiments. We compared our 
methods with the methods in [2], with the methods of Dekker [6] and Brent [5], 
and also with the Algorithm LZ4 of Le [8]. In our experiments, the parameter 
,t in all the methods of this paper and [2] was chosen as 0.5. For Dekker's 
method we translated the ALGOL 60 routine Zeroin presented in [6] into For- 
tran; for Brent's method we simply used the Fortran routine Zero presented in 
the Appendix of [5], while for the Algorithm LZ4 of Le we used his Fortran 
code. The machine used was Encore-Multimax, and double precision was used. 
The test problems are listed in Table 5.1. The termination criterion was the one 
used by Brent [5], i.e. 

(25) b - a < 2 . tole(a, b), 

where [a, b] is the current enclosing interval, and 

tole(a, b) = 2. Iu I macheps + tol. 

Here, u e {a, b} is such that If(u)l = min{lf(a)l, If(b)I}, macheps is the 
relative machine precision, which in our case is 2.2204460492504 x 10-16, and 
tol is a user-given nonnegative number. 

Owing to the above termination criterion, a natural modification of the sub- 
routine bracket was employed in our implementations of all the methods in this 
paper and in [2]. The modified subroutine is the following: 
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Subroutine bracket(a, b, c, a, b) (or bracket(a, b, c, a, b, d)). 
Set 3 = A)L tole(a, b) for some user-given fixed A E (0, 1) (in our experi- 

ments we took i = 0.7); 
if b - a < 43, then set c = (a + b)/2, goto 10; 
if c <a + 23, then set c = a + 23, goto 10; 
if c > b - 23, then set c = b - 23, goto 10; 

10 if f(c) = 0, then print c and terminate; 
if f(a)f(c)<0, then a=a,b=c, (d=b); 
if f(b)f(c) < 0, then i=c, b=b, (d =a); 
calculate tole(i, b); 
if b - a < 2 . tole(ai, b), then terminate. 51 

In our experiments we tested all the problems listed in Table 5.1 with different 
user-given tol (tol = 10-7, 10-10, 10-15, and 0). The total number of func- 
tion evaluations in solving all the problems (145 cases) are listed in Table 5.2, 
where BR and DE stand for Brent's method and Dekker's method, respectively, 
and "unsolved" means a problem is not solved within 1000 iterations. From 
there we see that our two methods compare well with the other six methods. 
The second method in this paper has the best behavior of all, especially when 
the termination tolerance is small. This reconfirms the fact that the efficiency 

TABLE 5.1. Test problems 

function f(x) [a, b] parameter 

sin x - x/2 [7r/2, 7r] 

-2 20i (2i - 5)2/(X -i [a, bn] 
an= n2+ lo-, 

An = (n + 1)2-10-9 n = 1(1)19 
axebx [-9, 31] a= -40, b=- 

a = -100, b = -2 
a = -200, b = -3 

xn - a [0, 5] a = 0.2, 1, n = 4(2)12 
[0.95, 4.05] a = 1, n = 8(2)14 

sin x - 0.5 [0, 1.5] 

2xe-n - 2e-&x + 1 [0, 1] n = 1(1)5, 15, 20 

[1 + (I- n)2]x -(1- nx)2 [0, 1] n = 1, 2, 5, 10, 15, 20 

x2_ (1X)n [0, 1] n=1,2, 5, 10, 15,20 

[1 + (1- n)4]x -(1- nx)4 [0, 1] n = 1, 2, 4, 5, 8, 15, 20 

e nx(x- 1) +xn [0, 1] n = 1, 5, 10, 15, 20 

(nx - 1)/((n - l)x) [0.01, 1] n = 2, 5, 15, 20 

0 if x =0 
-2 [-1, 4] 20ohotherwise 

li( x +snx-1) ifxrO M 1.5 
voters [_-104, 7r/21 n =1(1)40 

e - 1.859 if x> 2X 1- J riM ~~~~~~~Inn =20(1)40 
e(n+ 1)x12x i -0 _1.859 if x E [0, 2XIO-3] L_1v, 10]4 n =100(100)1000 

-0.859 if x< 0 



742 G. ALEFELD, F. A. POTRA, AND YIXUN SHI 

TABLE 5.2. Total number of function evaluations in solving all 
the problems listed in Table 5.1 

tol Bi B2 B3 Alg.1 Alg.2 BR DE LE 

10-7 3139 2895 2580 2800 2604 2693 2658 2643 

1010 3447 2995 2773 2990 2708 2794 2819 2808 

1 unsolved 

10-15 3672 3017 2948 3134 2746 2860 2955 2971 

1 unsolved 

0 3714 3041 3007 3137 2793 2873 2936 3025 

4 unsolved 3025 

TABLE 5.3. Total number of function evaluations in solving 
xn = 0 in [-1, 10] for n = 3, 5, 7, 9, 19, 25 

tol Bi B2 B3 Alg.1 Alg.2 BR DE LE BIS 

10-7 402 510 384 355 349 434 1340 185 174 

10-10 561 718 529 521 461 611 1987 237 234 

10-'5 785 1034 721 757 746 867 2 unsolved 377 325 

0 2219 2959 1793 2208 1830 2624 6 unsolved 1680 921 

index is an asymptotic notion. In order to give an interesting example where 
methods having higher efficiency index are outperformed by methods with lower 
efficiency indices, we compare those methods with the bisection method, solving 
the problem 

xn = O, n = 3, 5, 7, 9, 19, 25 
with the initial interval [a, b] = [-1, 10]. The results are listed in Table 5.3, 
where BIS stands for the bisection method. 

6. DISCUSSION 

We notice that our Algorithm 2 is an optimal procedure in the following 
sense. It is clear that Algorithm 2 improves our Algorithm 1 by repeating 2.3- 
2.4 in 2.5-2.6. If we repeat 2.3-2.4 a total of k times, then we get an algorithm 
of the form 

Algorithm 3 
3.1-3.2: same as 2.1-2.2; 

for n=2,3,...,do 
3.3 call Newton-Quadratic (an, bn, dn, Cn, 2); 
3.4 call bracket(an, bn, ac , b l), dl)); 

3.2k + 1 call Newton-Quadratic(ankl), bnkl), dUknl) n, k + 1); 
3.2k + 2 call bracket(an ), bn e), n a b, dn); 
3.2k+3- 3.2k+7: same as 2.7-2.11. El 
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It is clear that Algorithms 1 and 2 are special cases of Algorithm 3. Fur- 
thermore, similar to Theorem 4.3 and Theorem 4.5, we see that for Algorithm 
3, 

(bn+l-an+l) < Lk(bn-an)2k(bn-1-an-1), n = 2, 3,... 
for some Lk > 0 . Hence, Algorithm 3 has an R-order at least T = k + 1,+ k2, 
which is the positive root of the equation t2 - 2kt- 1 = 0 . Since asymptotically, 
Algorithm 3 requires k+ 1 function evaluations per iteration, its efficiency index 
is Ik = (k + 1k)/(k+1). By Lemma 2.2, Ik < I2, for all k - 2. Therefore, 
Algorithm 2 is the optimal choice. 

7. APPENDIX 

In what follows we list the three algorithms proposed in Alefeld and Potra 
[2], assuming that f(x) is continuous on [a, b] and f(a)f(b) < 0. For con- 
venience, we use the names B 1, B2, and B3 for the first, the second, and the 
third method in [2], respectively. 

Algorithm Bi 
set a = a, b= b, for n = 1, 2, ...do: 
B1.1 en = an - f[an , bni-lf(an); 
B1.2-B1.5: same as 1.4-1.7 in Algorithm 1 of this paper; 
B1.6 call bracket(dn, bn C5,n 5a bn); 
B1.7 if bn - an < (bn - an) then set an+1 = anebn+ =bn; 

else call bracket(an, bn, 0.5(an + bn) , an+i , bn+l) D 

Algorithm B2 
set a, = a, b, = b, for n = 1, 2, ... do: 
B2.1 en = an - f[an, bnYlf(an); 
B2.2 call bracket(an, bn, eCn an, bn); 
B2.3 en = the unique zero of P(an, bn, Cn)(X) in [and bn]; 
B2.4 call bracket(and bn ,n an bn); 
B2.5-B2.9: same as Bl.3-Bl.7. S 

Algorithm B3 
set a, = a , b, = b , for n = 1 , 2 , ... do: 
B3.1 en = 0.5(an + bn); 
B3.2-B3.6: same as B2.2-B2.6; 
B3.7 call bracket(dn, bn, 5n, an+1 , bn+l) a 
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